Spaces:
Sleeping
Sleeping
File size: 6,702 Bytes
a7d165c ca245fc 8a093ba 260f6d6 a7d165c 5ae4b14 f06ca93 260f6d6 e1af920 260f6d6 81b1612 260f6d6 e1af920 260f6d6 e1af920 1a2efd8 e1af920 377a616 e1af920 377a616 e1af920 377a616 e1af920 377a616 e1af920 260f6d6 377a616 e1af920 ca245fc e1af920 260f6d6 e1af920 377a616 f06ca93 e1af920 81b1612 e1af920 81b1612 e1af920 260f6d6 e1af920 260f6d6 e1af920 377a616 e1af920 377a616 e1af920 260f6d6 e1af920 260f6d6 ca245fc e1af920 377a616 e1af920 81b1612 e1af920 81b1612 e1af920 81b1612 e1af920 5ae4b14 1a2efd8 e1af920 9fdd6be e1af920 a34510d f06ca93 1a2efd8 ca245fc 377a616 e1af920 9035251 e1af920 ca245fc f06ca93 e1af920 a34510d ca245fc f06ca93 e1af920 ca245fc a7d165c e1af920 377a616 b986cc9 260f6d6 e1af920 260f6d6 1a2efd8 e1af920 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
# from fastapi import FastAPI
# from pydantic import BaseModel
# from fastapi.openapi.utils import get_openapi
# from transformers import AutoTokenizer, AutoModelForCausalLM
# import torch
# app = FastAPI(
# title="Harshal AI Backend",
# version="1.0.0",
# )
# MODEL_NAME = "Qwen/Qwen2.5-0.5B"
# tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
# model = AutoModelForCausalLM.from_pretrained(
# MODEL_NAME,
# torch_dtype=torch.float32,
# device_map="cpu",
# )
# class ChatMessage(BaseModel):
# messages: list
# @app.get("/")
# def home():
# return {"message": "Harshal AI backend running with Qwen 0.5B!"}
# @app.post("/chat")
# def chat(body: ChatMessage):
# user_msg = body.messages[-1]["content"]
# prompt = f"User: {user_msg}\nAssistant:"
# inputs = tokenizer(prompt, return_tensors="pt")
# outputs = model.generate(
# **inputs,
# max_new_tokens=120,
# pad_token_id=tokenizer.eos_token_id,
# temperature=0.4,
# )
# text = tokenizer.decode(outputs[0], skip_special_tokens=True)
# reply = text.split("Assistant:")[-1].strip()
# return {"reply": reply}
# @app.get("/openapi.json")
# def openapi_json():
# return get_openapi(
# title="Harshal AI Backend",
# version="1.0.0",
# routes=app.routes
# )
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import List
from transformers import AutoTokenizer, AutoModelForCausalLM
from sentence_transformers import SentenceTransformer
from pypdf import PdfReader
import torch, os
app = FastAPI(title="Harshal AI Backend", version="1.0.0")
# CORS (Next.js frontend)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_methods=["*"],
allow_headers=["*"],
)
# ============================================================
# 1) LOAD MAIN MODEL (Phi-3 Mini — good balance of quality/speed)
# ============================================================
MODEL_NAME = "microsoft/Phi-3-mini-4k-instruct"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
llm = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
dtype=torch.float32, # instead of torch_dtype
)
llm.eval()
# ============================================================
# 2) LOAD EMBEDDINGS + BUILD RAG FROM resume.pdf
# ============================================================
EMBED_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
embedder = SentenceTransformer(EMBED_MODEL)
RESUME_FILE = "resume.pdf"
resume_rag = None
def chunk_text(text, max_chars=450, overlap=80):
"""Simple overlapping chunks."""
text = " ".join(text.split())
chunks, start = [], 0
while start < len(text):
end = start + max_chars
chunks.append(text[start:end])
start = end - overlap
return chunks
def build_rag():
"""Reads resume.pdf → chunks → embeddings."""
global resume_rag
if not os.path.exists(RESUME_FILE):
print("⚠ resume.pdf NOT FOUND — RAG disabled.")
return
reader = PdfReader(RESUME_FILE)
full_text = ""
for page in reader.pages:
full_text += page.extract_text() or ""
chunks = chunk_text(full_text)
embeddings = embedder.encode(
chunks, convert_to_tensor=True, normalize_embeddings=True
)
resume_rag = {"chunks": chunks, "embs": embeddings}
print("✅ Resume RAG built with", len(chunks), "chunks")
build_rag()
def retrieve_rag(query, top_k=3):
"""Find most relevant resume chunks."""
if resume_rag is None:
return ""
q = embedder.encode([query], convert_to_tensor=True, normalize_embeddings=True)[0]
sims = torch.nn.functional.cosine_similarity(q.unsqueeze(0), resume_rag["embs"])
top = torch.topk(sims, k=min(top_k, len(sims)))
return "\n\n".join(resume_rag["chunks"][i] for i in top.indices)
# ============================================================
# 3) REQUEST MODELS
# ============================================================
class Message(BaseModel):
role: str
content: str
class ChatReq(BaseModel):
messages: List[Message]
# ============================================================
# 4) SMART MODE CHAT ROUTE (Resume + Fallback)
# ============================================================
@app.post("/chat")
def chat(req: ChatReq):
user_msg = req.messages[-1].content.strip()
# RAG: take from resume
rag_context = retrieve_rag(user_msg)
# Detect if we found resume info
has_relevant_rag = rag_context and len(rag_context) > 40
# SMART RULE:
# If resume has relevant info → answer ONLY from resume
# If resume has nothing → fallback using general persona
if has_relevant_rag:
fallback_note = ""
resume_instruction = """
Use ONLY the details provided in the resume context.
Do NOT invent any new companies, dates, or roles.
Stay strictly consistent with:
- Current company: Börm Bruckmeier Infotech India Pvt. Ltd.
- Past experience: SarvaTech Consultants (Internship)
- Personal projects listed in resume.
"""
else:
fallback_note = """
The resume does NOT mention this.
Provide a short helpful answer based on Harshal’s background, tone, and skills —
BUT do NOT invent companies, dates, or job titles not present in the resume.
"""
resume_instruction = ""
# System persona
system_prompt = f"""
You are Harshal Sonawane — a real human software engineer from Pune, India.
Tone:
- Natural, confident, friendly.
- 2–8 sentences max.
- Never say you are an AI.
Your resume (RAG context):
{rag_context}
Instructions:
{resume_instruction}
Fallback rule:
{fallback_note}
""".strip()
# Chat template
msgs = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_msg},
]
input_ids = tokenizer.apply_chat_template(
msgs,
return_tensors="pt",
add_generation_prompt=True,
)
with torch.no_grad():
output_ids = llm.generate(
input_ids,
max_new_tokens=160,
temperature=0.55,
top_p=0.9,
repetition_penalty=1.06,
do_sample=True,
)
gen = output_ids[0][input_ids.shape[-1]:]
reply = tokenizer.decode(gen, skip_special_tokens=True).strip()
return {"reply": reply}
# ============================================================
# 5) HEALTH CHECK
# ============================================================
@app.get("/")
def health():
return {
"status": "Harshal AI backend running (SMART MODE)",
"model": MODEL_NAME
}
|